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SPINELLA, M. AND R. J. BODNAR. Nitric oxide synthase inhibition selectively potentiates swim stress antinociception
in rats. PHARMACOL BIOCHEM BEHAV 47(3) 727-733, 1994. — Since nitric oxide (NO) has been implicated in nocicep-
tive processing, the present study examined whether NO synthase inhibition with either N*-nitro-L-arginine (L-NA) or its
methyl ester (L-NAME) would alter antinociception elicited by either continuous (CCWS) or intermittent cold-water swims
(ICWS) on the tail-flick and jump tests. Whereas CCWS antinociception on both tests was significantly potentiated by a dose
range of L-NA (0.1-4 mg/kg IP) and L-NAME (1 mg/kg IP), ICWS antinociception was largely unaffected by these
manipulations. In contrast, administration of the less active D isomer (D-NAME) failed to alter CCWS antinociception and
reduced ICWS antinociception. The ability of NO synthase inhibition to potentiate CCWS antinociception could not be
explained by changes in CCWS hypothermia. Since ICWS antinociception is mediated by u-opioid manipulations and CCWS
antinociception is sensitive to §-opioid and nonopioid manipulations, this indicates that NO synthase inhibition may be acting

upon a selective form of pain inhibition.

Nitric oxide N"-Nitro-L-arginine
Intermittent cold-water swims Stress

Antinociception
Opioid

Continuous cold-water swims
Nonopioid

ANTINOCICEPTION elicited by different parameters of
cold-water swims are differentially sensitive to opioid manipu-
lations {see review (2)]. Whereas continuous cold-water swim
(CCWS) antinociception is insensitive to morphine cross-toler-
ance or naloxone antagonism (3,4), intermittent cold-water
swim (ICWS) antinociception is sensitive to both manipula-
tions (9,10). ICWS antinociception is also potentiated by ei-
ther endopeptidase 24.11 or 24.15 inhibition (11), and thus
appears to be an opioid-mediated stressor especially sensitive
to manipulations involving the u-opioid receptor. In contrast,
CCWS antinociception is potentiated by either chronic nal-
trexone pretreatment or u, antagonism, and is reduced by ei-
ther endopeptidase 24.11 inhibition or simultaneous morphine
treatment (5,12,25,30), indicating nonopioid modulation.
However, CCWS antinociception is sensitive to reductions in-
duced by either §,-opioid antagonists (28) or intrathecal com-
binations of u, 8, and x antagonists (29). Interestingly, al-

though CCWS and ICWS antinociception dissociate from
each other in their response to other physiological and phar-
macological manipulations [see review (2)], both forms of
swim antinociception display reciprocal cross-tolerance (22).
The N-methyl-D-aspartate (NMDA) receptor has been hy-
pothesized to be one transmitter system that dissociates opioid
and nonopioid antinociceptive responses. Whereas the NMDA
antagonist MK-801 significantly reduces antinociception elic-
ited by a nonopioid form of swim stress (17,18,27), it fails to
alter antinociception elicited by either morphine (1,15,16,26)
or an opioid form of swim stress (17,18). One effect of gluta-
mate actions at NMDA receptors is the production of nitric
oxide [NO (6,8)], which in turn has also been implicated
in nociceptive processing [see review (20)]. Activation of NO
release produces antinociception (7,21). NO production is
blocked by the alternate substrate for the NO synthase enzyme
N"-nitro-L-arginine (L-NA) and its methyl ester (L-NAME)
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(24). L-NAME blocks a number of hyperalgesic responses in-
duced by NMDA or substance P administration, noxious cuta-
neous stimuli, or ligation of the sciatic nerve [e.g., (19,20,23)].
A recent role for NO in opioid function is supported by the
observation that L-NA significantly reversed the development
of tolerance to the u-opioid agonist morphine, but not the
x,~opioid agonist U50,488H or the «;-opioid agonist naloxone
benzoylhydrazone (13,14). These latter studies failed to ob-
serve L-NA-induced effects upon any of these opioid forms
of antinociception.

The present study examined whether CCWS and ICWS
antinociception on the tail-flick and jump tests was affected
by NO synthase inhibition following pretreatment with a dose
range of L-NA and its methyl ester L-NAME. To examine
specificity of drug effects, the less active isomer N"*-nitro-D-
arginine (D-NAME) was also tested. To examine specificity
of nociceptive processes, the effects of L-NA, L-NAME, and
D-NAME upon CCWS and ICWS hypothermia were also as-
sessed.

METHODS

Adult male albino Sprague-Dawley rats weighing 300-500
g (Charles River Laboratories, Wilmingon, MA) were housed
individually in wire mesh cages on a 12-h light-dark cycle with
ad lib access to rat chow and water. All rats were tested on
the tail-flick and jump tests in that order. Tail-flick latencies
were ascertained with a radiant heat source (IITC Analgesia
Meter, Woodland Hills, CA) by which heat was applied to
the dorsum of the rat’s tail 3-8 cm proximal to the tip. Each
session consisted of three latency determinations made at 10-s
intertrial intervals. To avoid tissue damage, the determination
was terminated if no response occurred after 12 s. Immedi-
ately thereafter, jump thresholds were ascertained in a cham-
ber (30 x 24 x 26.5 cm) with 14 grid bars spaced 1.9 cm
apart. Electric shocks (0.3 s) were delivered through the grids
by a shock generator (BRS/LVE, Beltsville, MD) and shock
scrambler (Campden Instruments, Chicago). An ascending
method of limits procedure was employed for each of six trials
with shock initially delivered at 0.1 mA and increased in 0.05-
mA increments at 5-s intervals. The jump threshold was de-
fined as either of the lowest of two consecutive intensities at
which the rat simultaneously removed both rear paws from
the grids or 1.2 mA, the cutoff.

After at least four days of baseline latency and threshold
determinations to ensure stability, the rats were divided into
two groups of six rats each which were matched for their
baseline latencies and thresholds. The first group had the fol-
lowing experimental conditions at weekly intervals: 1) vehicle
(1 ml/kg 0.9% normal saline IP)/no swim, 2) vehicle/CCWS,
3) L-NA (0.1 mg/kg)/CCWS, 4) L-NA (1 mg/kg)/CCWS, 5)
L-NA (4 mg/kg)/CCWS, 6) L-NA (4 mg/kg)/no swim, 7)
L-NAME (1 mg/kg)/CCWS, and 8) D-NAME (1 mg/kg)/
CCWS. In the CCWS condition, rats were placed for 3 min in
a 2°C bath in which the water was deep enough to prevent
standing. L-NA, L-NAME, and D-NAME (Sigma Chemical
Company, St. Louis) were dissolved in 0.9% normal saline
and administered IP. All injections were administered 15 min
prior to the swim or no swim conditions. Tail-flick latencies,
jump thresholds, and core body temperatures were assessed in
that order at 30, 60, and 90 min following the swim or no
swim condition. Core body temperatures were ascertained by
inserting a rectal probe (Sensortek, Clifton, NJ) until a stable
reading (£0.1°C) was achieved. The second group was
treated identically except that ICWS (2°C, ten 10-s swims, and
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ten 10-s recovery periods) was used as the stimulus condition.
Latency, threshold, and core body temperature data were sub-
jected to within-group analyses of variance (ANOVAs).
Dunnett comparisons (p < .05) evaluated significant swim
effects relative to the vehicle/no swim condition, and Dunn
comparisons (p < .05) evaluated significant drug effects rela-
tive to the corresponding vehicle/CCWS or vehicle/ICWS
conditions. Peak effects were examined at 30 min following
each treatment. The duration of effects was examined by de-
termining total analgesia, derived by subtracting the sum of
latencies or thresholds following vehicle/no swim conditions
from the sum of latencies or thresholds following a given
experimental condition.

RESULTS

CCWS Antinociception

Significant differences were observed on the tail-flick and
jump tests across conditions, across test times, and for the
interaction between conditions and times (ps < .0001).
CCWS significantly increased latencies (30-90 min) and
thresholds (30 min) relative to vehicle/no swim control condi-
tions. Significant and dose-dependent potentiations in the
peak and total antinociceptive responses following CCWS on
the tail-flick test were observed following L-NA doses of 1
(peak: 40%; total: 64%) and 4 (peak: 40%; total: 41%) mg/
kg and following the 1-mg/kg dose of L-NAME (total: 55%)
(Fig. 1, left panels). Significant and dose-dependent potentia-
tions in the peak and total antinociceptive responses following
CCWS on the jump test were also observed following L-NA
doses of 0.1 (peak: 48%; total: 193%), 1 (peak: 100%; total:
255%) and 4 (peak: 63%; total: 234%) mg/kg and following
the 1-mg/kg dose of L-NAME (peak: 101%; total: 294%)
(Fig. 1, right panels). In contrast, a comparable dose of the
less effective isomer, D-NAME, failed to significantly alter
either the peak magnitude or total duration of CCWS antino-
ciception on either nociceptive measure. The L-NA effects
occurred despite the fact that L-NA (4 mg/kg) failed to alter
baseline latencies and thresholds.

ICWS Antinociception

Significant differences were observed on the tail-flick and
jump tests across conditions, across test times, and for the
interaction between conditions and times (ps < .001). ICWS
significantly increased latencies and thresholds across the time
course relative to vehicle/no swim control conditions. Small
but significant reductions in the peak antinociceptive response
following ICWS were observed for both nociceptive measures
following the 0.1-mg/kg dose of L-NA (tail-flick: 39%; jump:
35%) and the 1-mg/kg dose of D-NAME (tail-flick: 31%;
jump: 25%) (Fig. 2, top panels). Neither the other doses of
L-NA nor the 1-mg/kg dose of L-NAME significantly altered
the magnitude of duration of ICWS antinociception on either
nociceptive measure (Fig. 2).

CCWS and ICWS Hypothermia

Significant differences were observed for core body tem-
peratures across conditions, across test times, and for the in-
teraction between conditions and times (ps < .0001). Core
body temperatures were significantly decreased following both
CCWS (30 min) and ICWS (30-90 min) relative to the corre-
sponding vehicle/no swim control conditions. The magnitude
of CCWS hypothermia was significantly reduced after 30 min
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by either L-NA (1 mg/kg) or D-NAME (1 mg/kg) (Fig. 3,
upper panels). The magnitude of ICWS hypothermia was sig-
nificantly reduced by L-NA doses of 0.1 (30-90 min), 1 (30
min), and 4 (30 min) mg/kg; the 1-mg/kg dose of L-NAME
(30-90 min); and the 1-mg/kg dose of D-NAME (30 min)
(Fig. 3, lower panels).

DISCUSSION

The present study found that L-NA and its methyl ester,
L-NAME, significantly potentiated the magnitude and dura-
tion of CCWS antinociception on the tail-flick and jump tests.
In contrast, the less active isomer, D-NAME, failed to exert
significant effects. The potentiation of CCWS antinociception
by L-NA and L-NAME occurred independently of changes in
CCWS hypothermia, since only low L-NA doses and the less
active isomer actually reduced the magnitude of CCWS hypo-
thermia. While NO synthase inhibition potentiated CCWS
antinociception, it generally failed to alter ICWS antinocicep-
tion. ICWS antinociception and hypothermia were reduced by
either low doses of L-NAME or D-NAME. Thus, the present
study reveals selective, facilititory effects of NO synthase inhi-
bition upon one form of stress-induced antinociception, but
not another form.

A major mechanism by which NO is implicated in nocicep-
tive processes is through NMDA receptor activation [see re-
view (6,8,20)]. If this is the presumed linkage between NO
and nonopioid swim stress antinociception, one would expect
similar results upon antinociceptive processes if there was
interference with either NMDA receptor activation (e.g., an-
tagonism by MK-801) or NO synthase inhibition (e.g., ad-
ministration of L-NA or L-NAME). The present results indi-
cate differential actions for NMDA receptor antagonism and
NO synthase inhibition in that the former reduced nonopioid
forms of swim stress antinociception (17,18,27) and the latter
potentiated CCWS antinociception in the present study.
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Typically, opioid and nonopioid mediation of swim stress
antinociception was defined by morphine cross-tolerance and
naloxone/naltrexone antagonism studies with ICWS antinoci-
ception sensitive to these manipulations (9,10) and CCWS
antinociception insensitive (3,4). Inhibition of enkephalin-
degrading enzymes potentiates ICWS antinociception (11) and
reduces CCWS antinociception (5). Further, CCWS antinoci-
ception is reduced by simultaneous morphine treatment (25)
and potentiated by either chronic naltrexone treatment (30) or
acute u, receptor antagonism (12). Thus, ICWS analgesia is an
opioid-mediated stressor especially sensitive to manipulations
involving the p-opioid receptor and, like morphine (13,14), is
insensitive to NO synthase inhibition. This lack of effect is
similar to the failure of NMDA antagonism to affect analgesia
elicited by either morphine (1,15,16,26) or opioid forms of
swim stress (17,18).

The different patterns of effects by NMDA receptor antag-
onism and NO synthase inhibition upon nonopioid swim stress
analgesia may alternatively reflect the definition of “nonopi-
oid.” Recently, some forms of swim analgesia that were insen-
sitive to such p-mediated manipulations as morphine cross-
tolerance or naloxone/naltrexone antagonism were found to
be sensitive to either §, opioid antagonists (28) or intrathecal
combinations of y, 8, and « antagonists (29). Further studies
are currently exploring the potential relationships between
sensitivity to NO synthase inhibition, NMDA receptor antago-
nism, and differential responses to opioid receptor subtype
antagonists using central microinjection studies. Whether NO
synthase inhibition is potentiating CCWS antinociception by
opioid (non-u) or nonopioid mechanisms is not known at pres-
ent, but these data provide further evidence for the selective
activation of different pain-inhibitory systems.
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